

PTSD Detection Device

Jonathan Pixler, Sam Brang, Comlan Bocovo, Steven Trinco, Carver Bartz, Maisy Millage

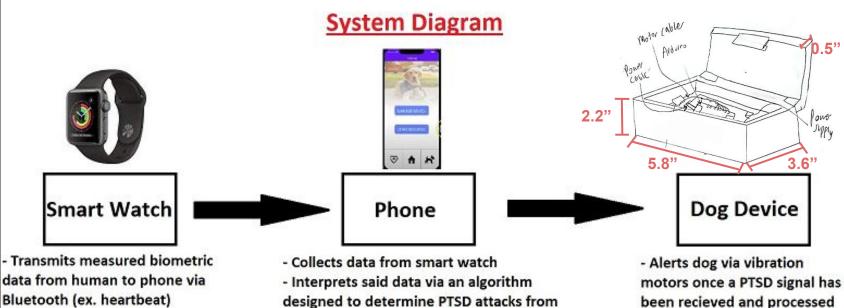
Group 08

Client: BAE Systems & America's VetDogs

Advisor: Mohamed Selim

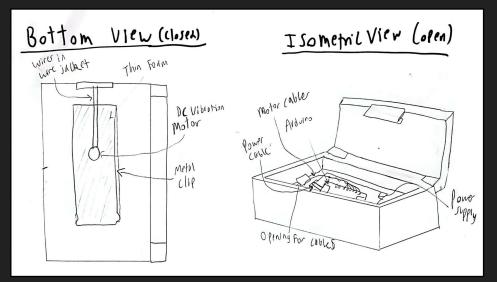
1 Trinco

Project Vision

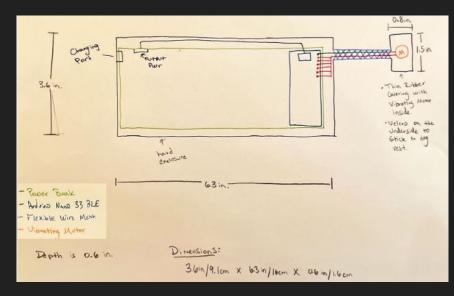

- Project Purpose: Close the response time between the detection of PTSD in a service dog to treating the human companion.
- Users: 1) Human Companion 2) Service Dog
- User Needs:
 - Structurally and functionally discrete
 - Comfortable
 - Faster dog alert than normal dog senses
 - Enough battery lifetime for a day of use
- Project Solution: Utilize and integrate common consumer technology with our own device and mobile software.

High Level Conceptual/Visual Sketch

designed to determine PTSD attacks from recieved data


- Fixed to vest of service dog

- Transmits signal to dog device via Bluetooth IF a PTSD attack is detected


3 Trinco

High Level Conceptual/Visual Sketch Continued...

Dog Device Hard Form Factor

Dog Device Soft Form Factor

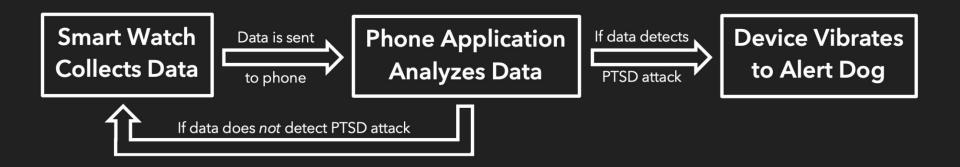
Requirements

• Functional

- App must be able to run on any mobile operating system
- Must track and send data to the Dog's device
- Stable Bluetooth connection
- Devices must be able to turn off during exercise

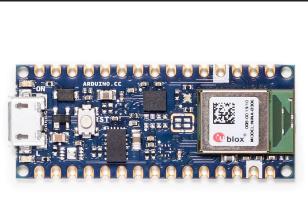
• Non-functional

- Adjustable for differents types of people and dogs
- Device does not hurt the dog
- \circ Affordable to most people
- Technical and/or other constraints
 - Light weight

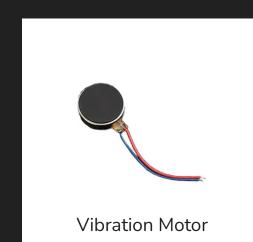

Engineering Standards

- **IEEE 802.15.6:** Wireless Body Area Network (WBAN)
- IEEE 802.15.1-2005: Bluetooth and Bluetooth Low Energy (BLE)
- **IEEE 1725-2006:** Rechargeable Batteries for Cellular Telephones
- IEEE 12207: Systems and Software Engineering Software life cycle processes
- IEEE 7002-2022: Data Privacy Process

6 Comlan

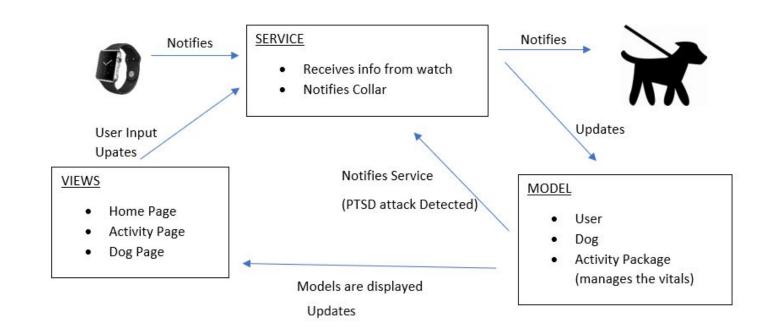

Conceptual Design Diagram

A high level diagram of the design approach

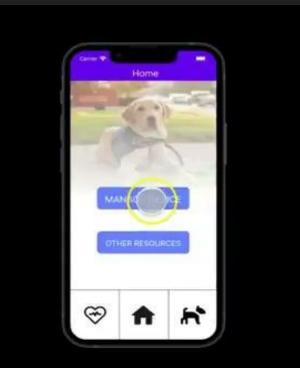


• Hardware Design:

- Arduino Nano 33 BLE Microcontroller
- 3 Volt Vibration Motors
- Bluetooth connection to Apple Watch
- 5 pins per vibration motor utilized to provide current

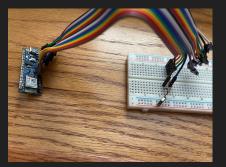


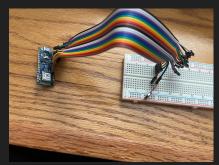
Arduino Nano 33 BLE

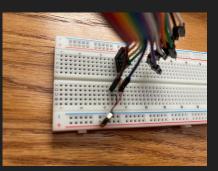


- Embedded System Design:
 - System architecture initializes all pins to output
 - Bluetooth connection establishment
 - Configuration Mode
 - Program Start
 - \circ $\,$ Main program will listen for messages from bluetooth line $\,$
 - When an attack is in progress, device will turn activate vibration
 - When attack has been subdued, the device will deactivate vibration

- Software Design (Mobile App)
 - Built using Flutter Framework
 - Follows an MVC pattern
 - A service to communicate with other systems (dog collar and smart watch), communication is done via FlutterMethodChannels and flutter_bluetooth_serial package.
 - Views will include Home Page, Activity Page, and Dog Page
 - Models will include User, Dog Info (dog collar), and Activity.
 - StateControllers are in Flutter StatefulWidgets, ActivityController will be managed in the Activity Model itself.
 - Cached Information will be managed via Flutter HiveBox
 - Machine Learning incorporated in the PTSD detection algorithm


• UI/UX Design (Mobile App)




Prototype Implementations

• First Hardware Prototype:

- Arduino Nano 33 BLE Soldered to breadboard pins
- Male to female breadboard jumpers bridging ground and microcontroller pins to breadboard
- \circ Breadboard containing ground jumper and all 5 output pins in parallel
- Vibration motor positive cable connected to line of parallel output pins
- \circ Vibration motor ground connected to breadboard ground linked to arduino ground
- Proof of concept with solid connections for programming inter device communication

Prototype Implementations

• Software Prototype:

- Basic UI elements have been implemented
- Custom elements can be changed later
- \circ Graphs for activity display have been added
- Navigational flow works

Design Complexity

• Hardware Complexity:

- Difficulty connecting devices to Arduino pins without solder
- Once connection was made, when vibration still wouldn't engage
- Tested with multimeters and the voltage was present, so faulty code ruled out
- Tested with LED, and LED worked, until vibration motor connected in parallel
- With this leading to current supply, tested vibration on power rail of arduino successfully
- Began down the road of designing a mosfet low volt switch or finding a low volt relay
- Had an idea to see if driving multiple pins in parallel would provide sufficient current
- \circ Built new prototype with 5 pins driving vibration and tested it successfully
- With this new system, we have now established full code controlled vibration
- Integration with bluetooth for remote control vibration is the next step

Design Complexity

• Software Complexity:

- Maintaining connections to dog collar and apple watch
- Reading and interpreting data in a timely manner
- Incorporating new Flutter dependencies and tools (learning curve)
- iOS development
- Machine learning algorithms

- In Future Iterations:
 - UI/UX will continue to look cleaner
 - Continuously making the PTSD detection algorithm

Project Plan - Tasks

- App
 - User Interface: Design Theme, Main Page, Activity Page, Dog Management Page
 - **Backend:** API/Send-Receive Data, Connecting to devices, Cache Info, Database
- **Dog Device:** Breadboard, Arduino with bluetooth, Vibration motor, 5V source for power, Device enclosure
- **Connections:** Flutter app, phone, and watch
- **Iterations:** Update enclosure, PCB to remove jumper wire/breadboard connections

Project Plan - Risks and Mitigation

- Users may feel our system is intrusive (Risk Rating 0.7)
 - Configurability: allow features to be turned off and on, customizable
- Dog is uncomfortable or unresponsive to stimuli (Risk Rating 0.3)
 - Multiple iterations and testing of the device design
 - Allow user to adjust the vibration to best suit their dog.
- Device may incorrectly detect PTSD attack (Risk Rating 0.7)
 - Allow user to turn off the device during physical activity

Project Plan

• Market Research Work with Veterans

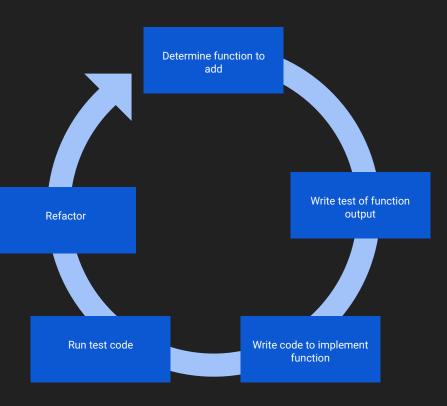
- We have consulted veterans already for features they would potentially want
- Continue to work with veterans to make necessary modifications as we begin our next iterations.

• Market Research Work with Dogs

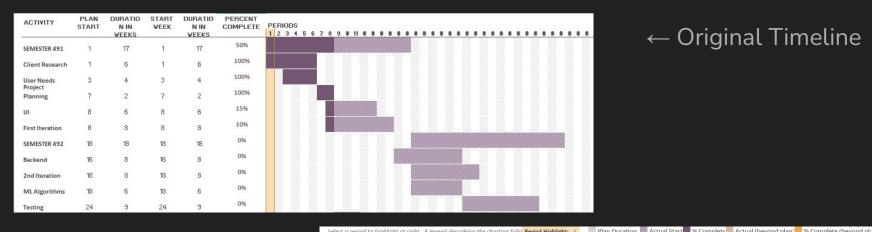
- BAE Systems will provide an opportunity to work with dog's next semester
- Ensure the dog's device is comfortable and effective

Project Plan - Milestones

- UI allows user to reach all features
 - design/theme is beyond this milestone
- About 80% accuracy when detecting PTSD
- Response time from PTSD episode
 - Recognized and sent to dog device is less than a second
- Dogs are respond well to the device at least 90% of the time
- Design of sensors and hardware finalized


Test Plan - Component/Unit

- Vibration Motor
 - Run manual tests to feel if vibration motor is working.
 - Dog's reaction time will be measured by a stopwatch.
- Battery
 - Lifetime of battery will be tested by using a voltmeter over an interval of time.
- Software
 - Implement multiple dart unit tests to test various use cases and functionality.
 - Simulate a user to ensure the flow of use case can be accomplished.
 - Mock objects to test the functionality of the sending, receiving and data storage between the 3 devices.


Test Plan - Interface/Integration

- App
 - Use of mock objects to test edge cases and various workloads.
 - Build unit tests to confirm user navigation works.
- Hardware
 - Verify there is a physical impulse from the motor when a signal is sent to it.
 - Bluetooth will be tested by writing a mock code to ensure the bluetooth connection is executing all functions and to ensure all sensors are functioning properly.
- System
 - Test the system as a whole, all components are sending and receiving data as expected.
 - Test use cases (turning on/off notifications, varying distances between systems, etc)

Test Process

Gantt Chart

← Original Timeline

Updated Timeline \rightarrow

- Needed more time for UI ۲ and 1st iteration
- Changed testing and • machine learning time

ACTIVITY	PLAN START	PLAN DURATION IN WEEKS	START WEEK	ACTUAL DURATION IN WEEKS	PERCENT COMPLETE	
SEMESTER 491 Client	1	17	1	17	100%	
Research	1	6	1	6	100%	
User Needs Project	3	4	3	4	100%	
Planning	7	2	7	2	100%	
UI	8	6	8	9	80%	
First Iteration	8	8	8	9	90%	
SEMESTER 492	18	18	18	18	0%	
Backend	16	8	16	8	10%	
2nd Iteration	18	8	18	8	0%	
ML Algorithms	18	8	18	8	0%	
Testing	20	11	16	11	10%	

24 Sam

Conclusions

- This semester
 - Fell behind schedule with the hardware as we discovered 1 pin wouldn't be enough to power the motor.
 - On schedule for everything else

- Next semester
 - Bluetooth Connection
 - Continue UI work
 - Create enclosure and test on the dog vest

Questions?

